immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Coerenza e flessibilità nel risolvere compiti spaziali: diversi cavalli mostrano differenti stili cognitivi

1. Stamps, J. & Groothuis, T. G. The development of animal personality: relevance, concepts and perspectives. Biol. Rev. 85, 301–325, https://doi.org/10.1111/j.1469-185X.2009.00103.x (2010).

 

  1. Guillette, L. M., Naguib, M. & Griffin, A. S. Individual differences in cognition and personality. Behav. Process. 134, 1–3, https://doi. org/10.1016/j.beproc.2016.12.001 (2017).

  2. Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: towards underlying mechanisms. Philos. T. Roy. Soc. B. 365, 4021–4028, https://doi.org/10.1098/rstb.2010.0217 (2010).

  3. Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378, https://doi.org/10.1016/j.tree.2004.04.009 (2004).

  4. Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philos. T. Roy. Soc. B. 367, 2762–2772, https://doi.org/10.1098/rstb.2012.0216 (2012).

  5. Ducatez,S.,Audet,J.N.&Lefebvre,L.Problem-solvingandlearninginCaribgrackles:individualsshowaconsistentspeed–accuracy trade-off. Anim. Cogn. 18, 485–496, https://doi.org/10.1007/s10071-014-0817-1 (2015).

  6. Griffin, A. S., Guillette, L. M. & Healy, S. D. Cognition and personality: an analysis of an emerging field. Trends Ecol. Evol. 30, 207–214, https://doi.org/10.1016/j.tree.2015.01.012 (2015).

  7. Guillette, L. M., Reddon, A. R., Hurd, P. L. & Sturdy, C. B. Exploration of a novel space is associated with individual differences in learning speed in black-capped chickadees. Poecile atricapillus. Behav. Process. 82, 265–270, https://doi.org/10.1016/j. beproc.2009.07.005 (2009).

  8. DePasquale, C., Wagner, T., Archard, G. A., Ferguson, B. & Braithwaite, V. A. Learning rate and temperament in a high predation risk environment. Oecologia. 176, 661–667, https://doi.org/10.1007/s00442-014-3099-z (2014).

  9. Guillette, L. M., Reddon, A. R., Hoeschele, M. & Sturdy, C. B. Sometimes slower is better: slow-exploring birds are more sensitive to changes in a vocal discrimination task. P. Roy. Soc. Lond. B. Bio. 278, 767–773, https://doi.org/10.1098/rspb.2010.1669 (2011).

  10. Verbeek, M. E., Drent, P. J. & Wiepkema, P. R. Consistent individual differences in early exploratory behaviour of male great tits.

    Anim. Behav. 48, 1113–1121 (1994).

  11. Exnerová, A., Svádová, K. H., Fučíková, E., Drent, P. & Štys, P. Personality matters: individual variation in reactions of naive bird

    predators to aposematic prey. P. Roy. Soc. Lond. B. Bio. 277, 723–728, https://doi.org/10.1098/rspb.2009.1673 (2010).

  12. Healy, S. D. Animal cognition: the trade-off to being smart. Curr. Biol. 22, R840–R841, https://doi.org/10.1016/j.cub.2012.08.032

    (2012).

www.nature.com/scientificreports/

  1. Trimmer, P. C. et al. Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems. P. Roy. Soc. Lond. B. Bio. 275, 2353–2361, https://doi.org/10.1098/rspb.2008.0417 (2008).

  2. Chittka, L., Skorupski, P. & Raine, N. E. Speed–accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 24, 400–407, https:// doi.org/10.1016/j.tree.2009.02.010 (2009).

  3. Spiers, H. J. & Gilbert, S. J. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front. Hum. Neurosci. 9, https://doi.org/10.3389/fnhum.2015.00125 (2015)

  4. Juszczak, G. R. & Miller, M. Detour Behavior of Mice Trained with Transparent, Semitransparent and Opaque Barriers. PloS one. 11, e0162018, https://doi.org/10.1371/journal.pone.0162018 (2016).

  5. Tommasi, L., Chiandetti, C., Pecchia, T., Sovrano, V. A. & Vallortigara, G. From natural geometry to spatial cognition. Neurosci. Biobehav. R. 36, 799–824, https://doi.org/10.1016/j.neubiorev.2011.12.007 (2012).

  6. Gygax, L., Reefmann, N., Wolf, M. & Langbein, J. Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats. Behav. Brain Res. 239, 104–114, https://doi.org/10.1016/j. bbr.2012.10.052 (2013).

  7. Koolhaas, J. M., De Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321, https://doi.org/10.1016/j.yfrne.2010.04.001 (2010).

  8. von Borell, E. et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—a review. Physiol. Behav. 92, 293–316, https://doi.org/10.1016/j.physbeh.2007.01.007 (2007).

  9. Stucke, D., Ruse, M. G. & Lebelt, D. Measuring heart rate variability in horses to investigate the autonomic nervous system activity–Pros and cons of different methods. Appl. Anim. Behav. Sci. 166, 1–10, https://doi.org/10.1016/j.applanim.2015.02.007 (2015).

  10. Quintana, D. S. & Heathers, J. A. Considerations in the assessment of heart rate variability in biobehavioral research. Front. Psychol. 5, 805, https://doi.org/10.3389/fpsyg.2014.00805 (2014).

  11. Baragli, P., Vitale, V., Paoletti, E., Sighieri, C. & Reddon, A. R. Detour behaviour in horses (Equus caballus). J. Ethol. 29, 227–234, https://doi.org/10.1007/s10164-010-0246-9 (2011).

  12. Osthaus, B., Proops, L., Hocking, I. & Burden, F. Spatial cognition and perseveration by horses, donkeys and mules in a simple A-not-B detour task. Anim. Cogn. 16, 301–305, https://doi.org/10.1007/s10071-012-0589-4 (2013).

  13. Krueger, K. & Flauger, B. Social feeding decisions in horses (Equus caballus). Behav. Process. 78(1), 76–83, https://doi.org/10.1016/j. beproc.2008.01.009 (2008).

  14. Wynne, C. D. L. & Leguet, B. Detour behavior in the Quokka (Setonix brachyurus). Behav. Process. 67, 281–286, https://doi. org/10.1016/j.beproc.2004.04.007 (2004).

  15. Bisazza, A., Pignatti, R. & Vallortigara, G. Detour tests reveal task-and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behav. Brain Res. 89, 237–242 (1997a).

  16. Lanata, A., Guidi, A., Baragli, P., Valenza, G. & Scilingo, E. P. A novel algorithm for movement artifact removal in ecg signals acquired from wearable systems applied to horses. PloS one. 10, e0140783, https://doi.org/10.1371/journal.pone.0140783 (2015).

  17. Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O. & Karjalainen, P. A. Kubios HRV-a software for advanced heart rate variability analysis. In: 4th European Conference of the International Federation for Medical and Biological Engineering 23–27 November (eds Vander Sloten, J., Nyssen, M., Verdonck, P. & Haueisen, J.), Antwerp, Belgium, p. 1022–1025 (2009).

  18. Stein, P. K., Bosner, M. S., Kleiger, R. E. & Conger, B. M. Heart rate variability: a measure of cardiac autonomic tone. Am. Heart J. 127, 1376–1381 (1994).

  19. Symonds, M. R. E. & Moussalli, A. A. brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21, https://doi.org/10.1007/s00265-010-1037-6 (2011).

  20. Mundry, R. & Fischer, J. Use of statistical programs for nonparametric tests of small samples often leads to incorrect P values:

    examples from Animal Behaviour. Anim. Behav. 56, 256–259 (1998).

  21. Cussen, V. A. & Mench, J. A. Personality predicts cognitive bias in captive psittacines. Amazona amazonica. Anim. Behav. 89,

    123–130, https://doi.org/10.1016/j.anbehav.2013.12.022 (2014a).

  22. Burns, J. G. & Rodd, F. H. Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory

    task. Anim. Behav. 76, 911–922, https://doi.org/10.1016/j.anbehav.2008.02.017 (2008).

  23. Bisazza, A., Pignatti, R. & Vallortigara, G. Laterality in detour behaviour: interspecific variation in poeciliid fish. Anim. Behav. 54,

    1273–1281 (1997b).

  24. Regolin, L., Rugani, R., Pagni, P. & Vallortigara, G. Working memory in the chick: parallel and lateralized mechanisms for encoding

    of object- and position-specific information. Behav. Brain Res. 157, 1–9, https://doi.org/10.1016/j.bbr.2004.06.012 (2005).

  25. Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav.

    Brain Sci. 28, 575–588, https://doi.org/10.1017/S0140525X05370105 (2005).

  26. Rogers, L. J. Asymmetry of brain and behavior in animals: its development, function, and human relevance. Genesis. 52, 555–571,

    https://doi.org/10.1002/dvg.22741 (2014).

  27. Shettleworth, S. J. Cognition, evolution, and behavior. (Oxford University Press, 2009).

  28. Reddon, A. R. & Hurd, P. L. Acting unilaterally: Why do animals with strongly lateralized brains behave differently than those with

    weakly lateralized brains? Biosci. Hypotheses. 2, 383–387, https://doi.org/10.1016/j.bihy.2009.06.007 (2009).

  29. Basile, M. et al. Socially dependent auditory laterality in domestic horses (Equus caballus). Anim. Cogn. 12, 611–619, https://doi.

    org/10.1007/s10071-009-0220-5 (2009).

  30. Proops, L. & McComb, K. Cross-modal individual recognition in domestic horses (Equus caballus) extends to familiar humans. P.

    Roy. Soc. Lond. B. Bio. 279, 3131–3138, https://doi.org/10.1098/rspb.2012.0626 (2012).

  31. Austin, N. P. & Rogers, L. J. Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses. Equus caballus.

    Anim. Behav. 83, 239–247, https://doi.org/10.1016/j.anbehav.2011.10.033 (2012).

  32. Larose, C., Richard-Yris, M. A., Hausberger, M. & Rogers, L. J. Laterality of horses associated with emotionality in novel situations.

    Laterality. 11, 355–367, https://doi.org/10.1080/13576500600624221 (2006).

  33. Austin, N. P. & Rogers, L. J. Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Appl. Anim.

    Behav. Sci. 151, 43–50, https://doi.org/10.1016/j.applanim.2013.11.011 (2014).

  34. Magat, M. & Brown, C. Laterality enhances cognition in Australian parrots. P. Roy. Soc. Lond. B. Bio. 276, 4155–4162, https://doi.

    org/10.1098/rspb.2009.1397 (2009).

  35. Güntürkün, O. et al. Asymmetry pays: visual lateralization improves discrimination success in pigeons. Curr. Biol. 10, 1079–1081,

    https://doi.org/10.1016/S0960-9822(00)00671-0 (2000).

  36. Sovrano, V. A., Dadda, M. & Bisazza, A. Lateralized fish perform better than nonlateralized fish in spatial reorientation tasks. Behav.

    Brain Res. 163, 122–127, https://doi.org/10.1016/j.bbr.2005.04.012 (2005).

  37. Fehr, E. Behavioural science: The economics of impatience. Nature. 415, 269–272, https://doi.org/10.1038/415269a (2002).

  38. Rosati, A. G., Stevens, J. R., Hare, B. & Hauser, M. D. The evolutionary origins of human patience: temporal preferences in

    chimpanzees, bonobos, and human adults. Curr. Biol. 17, 1663–1668, https://doi.org/10.1016/j.cub.2007.08.033 (2007).

  39. Green, L., Myerson, J., Holt, D. D., Slevin, J. R. & Estle, S. J. Discounting of delayed food rewards in pigeons and rats: is there a

    magnitude effect? J. Exp. Anal. Behav. 81, 39–50, https://doi.org/10.1901/jeab.2004.81-39 (2004).

  40. Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences.

    Anim. Behav. 85, 1031–1039, https://doi.org/10.1016/j.anbehav.2012.12.032 (2013).

 

 

www.nature.com/scientificreports/

  1. Carere, C. & Locurto, C. Interaction between animal personality and animal cognition. Curr. Zool. 57, 491–498, https://doi. org/10.1093/czoolo/57.4.491 (2011).

  2. Cussen, V. A. & Mench, J. A. Performance on the Hamilton search task, and the influence of lateralization, in captive orange-winged Amazon parrots (Amazona amazonica). Anim. Cogn. 17, 901–909, https://doi.org/10.1007/s10071-013-0723-y (2014b).

  3. Paul, E. S., Harding, E. J. & Mendl, M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci. Biobehav. Rev. 29, 469–491, https://doi.org/10.1016/j.neubiorev.2005.01.002 (2005).

  4. Hagen, K. & Broom, D. M. Emotional reactions to learning in cattle. Appl. Anim. Behav. Sci. 85, 203–213, https://doi.org/10.1016/j. applanim.2003.11.007 (2004).

  5. Graunke, K. L., Nürnberg, G., Repsilber, D., Puppe, B. & Langbein, J. Describing temperament in an ungulate: a multidimensional approach. PloS one. 8, e74579, https://doi.org/10.1371/journal.pone.0074579 (2013).

  6. Borstel, U. K. V. Assessing and influencing personality for improvement of animal welfare: a review of equine studies. CAB Rev. 8, 1–27, https://doi.org/10.1079/PAVSNNR20138006 (2013).

  7. Lloyd, A. S., Martin, J. E., Bornett-Gauci, H. L. I. & Wilkinson, R. G. Evaluation of a novel method of horse personality assessment: Rater-agreement and links to behaviour. Appl. Anim. Behav. Sci. 105, 205–222, https://doi.org/10.1016/j.applanim.2006.05.017 (2007).

  8. Visser, E. K. et al. Heart rate and heart rate variability during a novel object test and a handling test in young horses. Physiol. Behav 76, 289–296, https://doi.org/10.1016/S0031-9384(02)00698-4 (2002).

  9. Le Scolan, N., Hausberger, M. & Wolff, A. Stability over situations in temperamental traits of horses as revealed by experimental and scoring approaches. Behav. Process. 41, 257–266 (1997).

  10. Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374, https://doi.org/10.1016/j.physbeh.2007.03.016 (2007).

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
26/05/2020

Neuromiotonia in un cavallo

Questo articolo descrive i risultati clinici ed elettromiografici della neuromiotonia in un Quarter Horse di 19 mesi maschio che presentava rigidità e asimmetria muscolare a livello di arti posteriori, oltre a miochimia sacrococcigea, paravertebrale e glutea.

 
 

Formazione a distanza

 

Corsi FAD per ippiatri:

- Le micosi delle tasche gutturali

- Ciclo estrale e diagnosi di gravidanza

- Iter diagnostico del cavallo in colica

 

I corsi, che non erogano crediti formativi, sono accessibili dalla piattaforma e-learning nella sezione "Eventi non accreditati"

 

 

LIBRERIA PVI